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Abstract 
Effective teaching involves treating the presentation of new 
material and the assessment of students’ mastery of this material 
as part of a seamless and continuous feedback cycle.  We have 
developed a computer system, called Classroom Learning 
Partner (CLP), that supports this methodology, and we have 
used it in teaching an introductory computer science course at 
MIT over the past year.  Through evaluation of controlled 
classroom experiments, we have demonstrated that this approach 
reaches students who would have otherwise been left behind, 
and that it leads to greater attentiveness in class, greater student 
satisfaction, and better interactions between the instructor and 
student.  The current CLP system consists of a network of Tablet 
PCs, and software for posing questions to students, interpreting 
their handwritten answers, and aggregating those answers into 
equivalence classes, each of which represents a particular level 
of understanding or misconception of the material.  The current 
system supports a useful set of recognizers for specific types of 
answers, and employs AI techniques in the knowledge 
representation and reasoning necessary to support interpretation 
and aggregation of digital ink answers. 

Introduction   
Effective and timely feedback is widely acknowledged to 
be a powerful means of improving learning  (e.g., Angelo 
and Cross  1993, Bransford  1999, Steadman 1998).  This 
technique is applied easily when working with individuals 
or small groups.  Applying this technique in the classroom 
is another matter, however.  How can classroom 
instructors determine which concepts have been 
understood in a class of 25 or more, what kinds of 
misunderstandings exist, and how prevalent they are?  
How can instructors make these determinations quickly 
and effectively enough to respond on the spot? A variety 
of approaches have been used over the years, ranging 
from straightforward queries (“Who doesn’t 
understand?”), to structured questions (“Who thinks the 
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answer is …?”), to more elaborate approaches of the sort 
enabled by wireless polling systems (e.g., Draper 2004).  
    All of these techniques offer some benefit, but come 
with drawbacks.  No one likes to admit that they don’t 
understand, the number of volunteered answers to in-class 
questions is notoriously low, and while registering an 
answer electronically with a "clicker" provides helpful 
anonymity, the interaction currently must be structured in 
terms of some variety of multiple choice.  
    We are designing, building, and evaluating a system 
called Classroom Learning Partner (CLP) to enable 
interaction between students and instructors that offers 
anonymity in replies and the ability to aggregate student 
answers, but that provides a much wider range of 
interaction styles than is currently available with 
"clickers"—styles more in keeping with how people 
naturally work together.  
    As one example of our vision, consider a question we 
often ask in our introductory computer science course:  
Draw the data structure that results from evaluating a 
particular Scheme1 expression.  To assess understanding 
for an expression, e.g., (define my-list (list 4 5 6)), we use 
a variety of techniques, such as asking for volunteers, 
writing the correct answer on the board and asking who 
got it, or using two-part "carbon" paper and collecting one 
of the parts. All of these techniques, however, are too 
elaborate, labor intensive, and slow for the small but 
important point being made. 
    What if each student instead could write an answer on 
his or her tablet computer, sketching something such as: 
 
 
 
 
then submit the reply anonymously, and have software at 
the receiving system interpret each student’s combination 
of drawing and handwriting as a data structure; classify 
the result as either correct, as one of a number of known 
misunderstandings, or as an answer type not previously 
encountered; and immediately present to the instructor a 
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histogram indicating the classification results. This 
functionality would enable students to assess their 
understanding quickly and instructors to repair any 
misconceptions immediately.    
    We have constructed and tested in the classroom a 
system capable of interpreting and aggregating classroom 
answers written as numbers or character strings, or sets or 
sequences of numbers or character strings.   We have 
employed AI techniques in the knowledge representation 
and reasoning necessary to support interpretation and 
aggregation of digital ink answers:  an ontology centered 
around exercises and answers, a semantic representation 
for interpreted digital ink, a method for using answer type 
information to improve ink interpretation rates, and 
similarity measures for aggregating interpreted ink 
answers.  We have evaluated the system in two ways:  the 
performance of the system's ink interpretation and 
aggregation components, and the effect on student 
learning of real-time feedback and assessment of 
wirelessly submitted digital ink answers to in-class 
exercises.  In the following sections of this paper, we 
discuss related work, and describe our system 
architecture, use of AI techniques, and our evaluations. 

Related Work 
Classroom Learning Partner uses a wireless distributed 
presentation system, Classroom Presenter (Anderson et al. 
2004), as its underlying infrastructure.  CLP's goals are 
similar to Classroom Presenter's: to increase instructor-
student interaction and learning.   CLP has two additional 
goals:  to explicitly support real-time feedback and in-
class assessment, and to do so in classes larger than is 
currently possible with Classroom Presenter.  
     Ubiquitous Presenter (Wilkerson, et al. 2005) is a web-
based version of Classroom Presenter that extends student 
input devices to include a keyboard, and radio-button 
polling plus aggregation for fixed-answer questions. 
DyKnow (Berque 2004) supports wireless transmission of 
ink between instructor and student machines, though does 
not interpret or aggregate student answers. Other systems 
support student question-asking using small handheld 
devices in class:  ActiveClass (Ratto, et al. 2003) allows 
students to send typed questions directly to an instructor 
during class; with eFuzion (Wentling et al. 2003) students 
can post typed questions and answers to a group website.    
    Systems that come closest to CLP's aggregation idea 
are wireless polling systems:  Students use a transmitter, 
aka "clicker", to submit anonymous answers to multiple-
choice, true and false, or matching questions.  The results 
are tabulated and displayed on the instructor’s computer 
in the form of a histogram.  Such a polling system 
provides a way for students to communicate their 
misunderstandings to an instructor.  Instructors, however, 
are limited to asking questions with predefined sets of 
answers—close-ended questions, which do not foster the 
critical thinking skills that open-ended questions do 

(Bloom 1956).  CLP's aim is to facilitate aggregation of 
both close-ended and open-ended questions. 

Classroom Learning Partner Architecture 
CLP's system architecture is shown in Figure 1. The 
major components are an instructor authoring tool, an ink 
interpreter, an aggregator, and a results displayer.  The 
components communicate via a central database, which 
embodies our ontology. Most of CLP is written in C#, 
the implementation language for the underlying 
Classroom Presenter infrastructure. 
 
Instructor Authoring Tool 
CLP is organized around the idea of exercises, so the 
instructor needs a way to create exercises for a classroom 
presentation.  Using the Instructor Authoring Tool (IAT), 
an instructor creates a presentation in Microsoft 
PowerPoint, then adds exercise information to the 
presentation.    The IAT allows an instructor to add two 
key pieces of information:  the location of a student's ink 
answer, and the expected type for that answer.  Providing 
the answer location allows students to take notes 
anywhere on a slide and not have to "lasso" an answer for 
submission. More importantly, the location information 
allows the instructor to include more than one exercise 
per slide:  the ink interpreter knows where to find answers 
for particular exercises.  Consider the following slide: 
 
 
 
 
 
 
 
 
 
 
    Each box represents an exercise answer, so that three 
exercises can be worked and discussed together, giving 
students more practice and saving the instructor time. The 
associated expected type information is used by the ink 
interpreter to increase interpretation rates.  Consider the 
following ink answer:   . If the expected type is a number, 
the interpreter can prefer a hypothesis for 5 rather than 
one for S. The aggregator uses the expected type 
information to select appropriate similarity measures for 
its groupings.   The exercise information is stored in the 
presentation, for ease of access by the interpreter, and in 
the central database, for ease of access by the aggregator. 
    In our current system, the instructor does not need to 
provide answers; the aggregator clusters student answers 
rather than matching student answers to instructor 
answers. 

Practice 

  (define a 1) 
  (define b 2) 

What does the Scheme interpreter print for each  of 
these expressions: 

    (list a b) 

    (list ’a ’b) 

    (list ’a b)  

  

 
 
 



 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
     Figure 1.  CLP architecture 
  Before class: 

1.  Instructor creates presentation and exercises using IAT; exercises are stored in database, slides on file server. 
     During class: 

2.  Instructor retrieves presentation from database (or it is resident on her machine already). 
3.  In Classroom Presenter, presentation slides are broadcast to student machines; in CLP slides are automatically 
loaded onto student machines when they log in to their Tablet PCs. 

4. When a slide with an exercise is displayed, student enters ink answer, which is interpreted on his or her machine.  
5.  Each student's ink answer and interpretation are transmitted to database via wireless peer-to-peer (P2P) network. 
6. When instructor indicates end of student exercise period (e.g., orally), she clicks on aggregator icon, which 
causes aggregator to retrieve the interpreted ink answers, aggregate them, and produce summary data. 
7.  Summary data is transmitted to the database via wireless P2P network. 
8.  Summary data is displayed on instructor's machine. 

 

Ink Interpreter 
The ink interpreter (MRbeiz 2006) runs on the student 
Tablet PCs. We had hoped to use the built-in Microsoft 
recognition software, but found that for our domain its 
error rate of 27% was too high. Instead, we designed an 
architecture that combined new components with some of 
the components of the built-in software.  One of the 
challenges of our architecture was to interpret intermixed 
handwritten text and arrows, since recognizers typically are 
able to recognize text or sketches, but not both in the same 
sequence of ink.  The CLP ink interpreter uses a two-tiered 
architecture similar to that of MathPad: (LaViola, et. al 
2005):  (1) An interpreter performs recognition and 
semantic information extraction from digital ink; (2) a 
renderer renders and displays the semantic representation 
of digital ink. Unlike MathPad, however, our interpretation 
happens synchronously, i.e., after the user inputs ink. 
While asynchronous interpretation is usually faster, it 
requires the use of an event-based system that would have 
required major modifications to the underlying 
infrastructure. The difference in speed of synchronous vs 

asynchronous interpretation is negligible for the small size 
of our typical answers, so we deemed synchronous 
interpretation sufficient.  CLP also differs from MathPad in 
that students do not see recognition results (though the 
developers do when debugging), as we do not want them to 
get distracted worrying about interpretation accuracy; we 
want the lesson to proceed without interruptions.  Some ink 
misinterpretations will not affect the use of CLP in the 
classroom:  The CLP aggregator (Smith 2006) takes into 
account interpretation errors by acknowledging the 
recognition confidence provided by the interpreter.  
Furthermore, CLP is designed to give the instructor an 
overall view of the understanding in the classroom, rather 
than an exact count of correct and incorrect answers.  
   Shown in Figure 2 is the CLP ink interpreter architecture.   
The current version does not segment text and sketches; it 
passes ink directly to our handwriting recognizer.  The 
handwriting recognizer, which distinguishes text from 
arrows, produces a semantic representation for the ink.   
The ink interpreter currently under development will 
segment text and sketches, and pass corresponding strokes 
to the handwriting recognizer or the sketch recognizer.   

CLP architecture 
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Figure 2. Ink interpreter architecture (Rbeiz 2006)   
 
The handwriting recognizer works in the following way: 
•  The ink segmentation module, derived from Microsoft's 
Ink Analyzer, segments ink into individual chunks. Chunks 
are elementary units that in our current implementation are 
words or arrows. 
•  Our chunk error correction module attempts to fix errors 
common to handwriting recognizers: splitting a word into 
two words, or combining two words into one. 
•  The strokes of each chunk are then passed to the 
Microsoft English recognizer which outputs several 
hypotheses, ranked by a qualitative confidence score. 
•  The hypotheses are sent to the language model module, 
which uses a domain-specific dictionary and knowledge of 
expected exercise answer type in order to choose a best 
hypothesis.  Supported answer types are: number, string, 
set, sequence, Scheme expression.  Multiple-choice and 
true-false are subclasses of the string type.   Scheme 
expression is a subclass of sequence; it uses a dictionary of 
Scheme terms. 
   Figure 4 shows CLP's ink interpretation for a student 
answer: Ink is segmented, passed to the English recognizer, 
then through the language model.  An XML-like semantic 
representation is the result. 

 
<Answer Type="SEQUENCE"> 

<ChunkType="STRING" 
Confidence="Strong">number,</Chunk> 
<Chunk Type="STRING" 
Confidence="Strong">number</Chunk> 
<Chunk Type="ARROW" Confidence="Intermediate"/> 
<Chunk Type="STRING" 
Confidence="Strong">number</Chunk> 

</Answer> 
 

Figure 4. Segmentation and semantic representation 

    Recognition accuracy traditionally has been measured 
with a word error rate. In our research it was more 
appropriate to test the distance between the input and 
recognized strings in order to measure partial accuracy. If 
the input string is “caar”, for example, and the subsequent 
recognition results are “cr” and “car”, we want to take into 
account the similarity between the expected answer and the 
hypothesized one, something a word error rate cannot do. 
The Levenshtein distance (Atallah 1998), or edit distance, 

measures the distance between two strings, defined as the 
minimum number of operations needed to transform one 
string into the other, where an operation is an insertion, 
deletion, or substitution of a single character. In our 
example, the edit distance between “caar” and “cr” is 2 
while the distance between “caar” and “car” is 1.  In a 
controlled experiment, users were asked to ink 21 
representative answers, and 167 inked answers were 
collected from several users. The inked answers were 
dynamically interpreted, stripped of spaces, and converted 
to lower case. They were then compared to the input. The 
current version of the handwriting recognizer performed 
with 249 characters errors out of 1820 characters, 
approximately 13% error rate. (See (Rbeiz 2006) more 
details.)   The error rate for numbers was 5%. 

Aggregator 
The aggregator, which runs on the instructor's machine, is 
started by the instructor after students have submitted 
exercise answers.  The aggregator retrieves student 
answers from the central database and, using the semantic 
representations produced by the ink interpreter, knowledge 
of expected answer type, and similarity measures 
associated with the type, groups the most similar answers 
together into equivalence classes. It outputs the classes, 
class sizes, and two example members for each class.  The 
aggregator results displayer then displays a histogram on 
the instructor’s machine, with one histogram bar per class. 
(The displayer is discussed in the next section.) The 
aggregator is implemented in Lisp. 
   To place the student answers in meaningful groups, the 
aggregator compares student answers using similarity 
measures based on answer type.  It is being designed to 
take two approaches:  a top-down method and a bottom-up 
method. The top-down method first places all of the 
answers in a single group, then searches for the most 
logical split by picking two new group "centers" and 
dividing the rest of the answers based on which center is 
the most similar. The smaller groups are then split in a 
similar fashion until an instructor-determined number of 
groups has been created. The bottom-up method begins 
with each answer in its own one-member group and 
searches for the most logical way to merge two of the 
groups. The groups are merged until the instructor-
specified number of groups remains. If the instructor has 
provided answers for an exercise, the aggregator uses these 
answers to determine the choice of splits and merges. If 
answers are not provided, the similarity measures 
determine the splits and merges. 
   An early design decision put most of the "smarts" in the 
aggregator rather than the ink interpreter. Consider the 
following student answers to a true-false question:    
    
   The reasoning for equating all of these with "true" could 
happen in either the ink interpreter or the aggregator:  The 
interpreter could have canonical representations for 
particular strings or characters and include those in its 
semantic representation; or the ink interpreter could leave 



 

 

the ink as written, and the aggregator could contain 
synonym tables that it used when clustering student 
answers.  We opted for the second approach, putting the 
intelligence in the aggregator since it was already 
reasoning about answer similarity.    
   Our current prototype, which employs the top-down 
algorithm, can aggregate numbers, strings, sets, sequences, 
and answers to true-false or multiple-choice questions 
(since these answers are treated as strings).  It has been 
designed such that other question types may be integrated 
easily by writing the similarity measure for each new 
question type and by adding a small amount of dispatch 
code. The current similarity measure for numbers is the 
absolute value of the difference between the two numbers.  
Our string similarity measure uses a modified version of 
Levenshtein distance that assigns different costs to 
insertion, deletion, and substitution. The similarity measure 
for sequences employs a similar algorithm:  The sequence 
itself is considered a string, with word-by-word 
comparisons made in the same fashion as character-by-
character comparisons are made in strings.   Sets are 
compared in the same fashion, but without penalty for 
differences in element order. For each similarity measure, 
the aggregator has a threshold for determining whether an 
answer is similar enough to be placed with other members 
in an equivalence class. This parameter is user-settable and 
currently has a value of 10%, meaning that answers must 
be at least 90% alike to be placed in the same class. 
   The aggregator has been tested using student answers 
from online problem sets for the introductory computer 
science course (XTutor). Its choice of grouping was 
examined for "reasonableness" and also compared against 
grouping performed by "human aggregators".   Four 
questions, representative of those asked in class, were 
chosen from the online problem sets; two hundred student 
answers were selected for each question.  One of the 
questions is shown below.  (See (Smith 2006) more 
details.)  

 Question: Assume that we have evaluated the  following  
definition:  

     (define fizz  

       (lambda (a b) (* (/ a b) (/ b a))))  

 Now, we evaluate the expression: 

     (fizz (+ 1 -1) 1)  

 What is the first step of the substitution model? 

 Answer: (fizz 0 1) 

Figure 5. Aggregator test question 
   When the student answers were aggregated for the above 
example, the largest bin contained answers that included 
the terms "define" or "lambda", indicating that students did 
not understand the meaning of those terms. The second 
largest bin contained the terms "a" and "b", indicating that 
students did not understand that they were to substitute the 
argument values of 0 and 1 into the expression.  The 
remaining two bins contained answers that represented the 
second and third steps in the model, respectively, 
indicating that students were not aware of  what constituted  

a step. 
    To compare machine and human aggregator results, 25 
answers—about the size of a typical class—were chosen 
for each question, printed on paper, and given to four 
former 6.001 instructors and teaching assistants.  These 
human aggregators were asked to group the answers using 
any similarity measures they chose. To ensure the 25 
answers were representative of the entire set, the original 
200 answers were aggregated and answers were drawn 
from each bin in proportion to the relative size of the bins.   
After grouping the student answers, each human 
aggregator was asked to explain his or her groupings. 
    For two of the four questions, the groupings created by 
the human aggregators were very similar to those created 
by CLP.  For the question above, for example, the human 
aggregators created three groupings rather than four, 
combining into one bin the answers that indicated missed 
steps.  For one question, two of the human aggregators 
produced groupings similar to CLP's and two did not.  One 
question produced very different groupings even among 
the human aggregators, with the instructors and teaching 
assistants grouping based on the presence or absence of 
particular terms, length of answer, perceived 
misconception, or result of evaluating the student answer.  
Finally, the human aggregators thought CLP's groupings 
for each of the four questions "reasonable". 
   The conclusion is an obvious one:  There is not 
necessarily one correct set of groupings for a particular set 
of answers.   Instructors can control the grouping should 
they choose, however, by specifying answers for exercises 
created with the IAT.  These answers then serve as "bins" 
for the aggregator. 

Results Displayer   
When the aggregator has completed its grouping of student 
answers into equivalence classes, it calls the results 
displayer to put up a histogram on the instructor's machine.    
 
 
 
 
 
 
 
 
 
 

  

Figure 6.  Aggregation results display  
    Each bar in the histogram, as shown above, is labeled 
with the number of items in the associated equivalence 
class and with a label derived from one of the elements in 
the class. In the current version of CLP, the items 
associated with each histogram bar are not directly 



 

 

Figure 7.  Portion of CLP database model 

accessible via the bar.   Instead, the instructor selects color-
coded student answers that were sent to the instructor's 
machine using Classroom Presenter's underlying ink 
transmission mechanism.  As shown in Figure 6, each 
answer is labeled with student machine name and ink 
interpretation, and each label is in the color of the bar to 
which the answer belongs.  Because instructors can easily 
become overwhelmed with more than eight submissions 
(Anderson 2005a), it is critical that student submissions be 
stored not on the instructor's machine but in CLP's central 
database, and that only a small number of representative 
answers be sent to the instructor's machine.  The version of 
the results displayer currently under development operates 
in this fashion. 
 
Central Database 
The central database, through which the various 
components of CLP communicate, embodies the ontology 
necessary to support interpretation and aggregation of in-
class digital ink answers.  The ontology centers around 
Exercise and Answer objects.  The instructor creates 
exercise objects, which are stored in the database, using the 
Instructor Authoring Tool (IAT).  Answer objects are 
created automatically in the database when students submit 
digital ink answers in class.  The database is a relational 
SQL database, chosen for ease of integration with our C# 
code.  We emulate an object-oriented database by 
representing object classes as different tables (Figure 7). 
Instances are represented as rows in tables. 

    In our current implementation, the database runs on a 
dedicated Tablet PC, which also serves as a gateway to the 
Internet.2 In an earlier implementation, the database ran on 
a remote server because it was deemed the option most 
reliable and secure. We had problems, however, with 
database submissions being lost due to unreliable network 
connectivity to the remote host.  Since migrating to a 
dedicated local server, to which the instructor and student 
machines communicate via a wireless peer-to-peer network, 
we have not experienced loss of student submissions. The 
local server also has the advantage of allowing the 
instructor to be entirely self-sufficient in the classroom. 

Classroom Evaluation 
In parallel with our implementation efforts, we have been 
conducting studies to assess the impact on student learning 
of real-time Tablet-PC-based feedback and assessment of 
in-class exercises.  As previously reported (Koile and 
Singer 2005, 2006), we have evaluated the hypothesis that 
the use of such a system increases student learning by:  (1) 
increasing student focus and attentiveness in class, (2)  
providing  immediate  feedback to both students  and 
instructor about student misunderstandings, (3) enabling 
the instructor to adjust course material in real-time based 
upon student answers to in-class exercises, (4) increasing  
student satisfaction.  In three studies conducted in MIT's 
introductory computer science, we evaluated each of the 
above four parameters by means of classroom observation, 
surveys, and interviews.   We also measured student 
performance using grades for exams, programming 
projects, problem sets, a final examination, and class 
participation.  The performance results are summarized in 
this section. 
 
Learning Studies.  We have conducted studies in MIT's 
introductory computer science course, 6.001, during 
academic terms Fall 2005, Spring 2006, and Fall 2006. The 
course typically has an enrollment of 100 for Fall terms 
and 200 to 300 for Spring terms.  Students taking the 
course meet in lecture for 50 minutes twice a week, in 
recitation classes of size 15 to 25 for 50 minutes twice a 
week, and in tutorial classes of size 5 to 7 for 50 minutes 
once a week.  Our learning studies were conducted in 
recitation sections taught by the first author; classroom 
observation, surveys, and interviews were conducted by 
the fifth author. In each of the studies, Tablet PCs were 
deployed the sixth week of class—after the first exam—
and used once or twice a week for the remaining nine 
weeks of the course. In Fall 2005, the first author taught 
one 6.001 recitation section in which Tablet PCs  running 
Classroom Presenter software were deployed.  In Spring 
2006, the first author taught two 6.001 recitations, one that 
served as a control group in which she employed 
traditional teaching tools such as blackboard and overhead 
                                                
2 With Internet access, students are able to save class slides 
directly to their home directories. 



 

 

projector; and one that served as the experimental group in 
which she used Tablet PCs running Classroom Presenter 
software. CLP was under development while these two 
studies were being carried out.  Since the instructor used 
the same feedback and in-class assessment pedagogy as 
planned for CLP, we deemed the results of evaluating the 
use of Classroom Presenter to be relevant for CLP as well.  
In Fall 2006, the first author again taught two 6.001 
recitations, one serving as a control group without Tablet 
PCs, and one serving as an experimental group with Tablet 
PCs and CLP software.  In each of these three studies, the 
same real-time feedback and in-class assessment pedagogy 
was used in both control classes and experimental classes.  
The experimental classes, however, had the benefit of 
anonymous submission of student answers via Tablet PCs 
in place of traditional techniques such as calling on 
students to show their work on the blackboard.  CLP's 
aggregator was used in Fall 2006 to aggregate confidence 
surveys that were given at the end of each class.  It was not 
used for aggregating student answers to exercises because 
the ink interpretation rate was not high enough for 
meaningful results.  (See next section for discussion of this 
issue.)  Below is an example of a student answer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Student submission during a 6.001 class 
 
    Our findings in each of the studies have been consistent: 
In the classes using Tablet PCs and wireless transmission 
of answers to in-class exercises, fewer students than 
expected performed poorly (Koile and Singer 2005, 2006). 
Each of the following graphs illustrate the gap between the 
lowest performing students in the Tablet PC class and the 
non-Tablet-PC class.  Note that in each study the lowest 
performing students were in the classes without Tablet 
PCs.    
    In Fall 2005, the non-Tablet-PC students were in other 
instructors' classes, so we were not able to control for 
teaching style.  Nevertheless, the use of the Tablet PCs, 
plus submission of answers and immediate feedback 
pedagogy, seems to have benefited students at all levels of 
performance.  When we controlled for teaching style, as in 
the Spring 2006 and Fall 2006 studies, there is a consistent 
pattern that the poorer performing students benefit most.  
The results are statistically significant for the Fall 2005 and 
Fall 2006 studies.  The number of students participating in 
the Spring 2006 study was too small for statistical 

significance, though the pattern of performance in that 
study was consistent with the others.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Graphs of student performance 

    In the Fall 2005 and Spring 2006 studies, we saw slight 
increases in the number of top performing students in the 
experimental class; we did not see this increase in the Fall 
2006 study.  This small or negligible increase indicates that 
either the top performing students are not benefiting from 
use of the technology (and would learn the material just as 
well without it), or that their benefits are not being 
measured.  Top performing students in the experimental 
class, for example, could have learned the material more 
quickly than their counterparts in the control class.   
    We are repeating our learning study in Spring 2007, 
again with control and experimental groups in the first 
author's 6.001 recitation classes. We again will investigate 
the parameters mentioned earlier and the affect of Tablet 
PCs and CLP on student performance. 

breadth first search 

What is the order in which nodes are explored? 



 

 

CLP in the Classroom.  We deployed CLP in the Fall 
2006 classroom study.  As mentioned earlier, the first 
author used CLP's aggregator at the end of each class for 
aggregating confidence scores, numbers on a scale from 
one to seven that indicated a student's confidence in 
understanding particular concepts.  The expected answer 
types were numbers, whose ink interpretation error rate as 
noted earlier is 5%.  That rate was high enough for useful 
aggregation of student submissions.   The instructor used 
the aggregated results at the end of each class to gauge the 
students' understanding and to guide lesson planning for 
the next class. Unfortunately, the ink interpretation was not 
accurate enough for the aggregator to be used for many 
other exercises.   The sequence answer type, for example, 
was not specific enough to achieve good recognition for 
many answers.  When interpreting the sequence of single 
characters shown in Figure 8, for example, the Microsoft 
English recognizer returned a sequence of multi-character 
strings rather than individual characters, presumably 
because it was trained to search for words.    

Current Work 
   We are continuing our two lines of research:  further 
development of CLP, and conducting another learning 
study this term.   We again plan to deploy Tablet PCs in 
one of the first author's two 6.001 recitations.  We will 
deploy a new version of our ink interpreter, one that we 
expect will have improved recognition rates because it 
includes more specific answer types.  Such new types, e.g., 
sequence of characters, will improve interpretation 
rates by supplying more information for the interpreter to 
use when choosing among hypotheses.   We also will add 
to the IAT a mechanism for storing instructor-specified 
answers, to be used by the aggregator as clustering 
"centers".  We will compare the equivalence classes 
produced using the instructor-specified centers with classes 
created using aggregator-chosen centers. 
    In addition, we are working on the interpretation and 
aggregation of sketched answers, such as the box-and-
pointer diagram shown in the introduction.  We also are 
working on the interpretation and aggregation of what we 
are calling marked answers, such as a circle around a 
multiple-choice answer or on a map.  These marks differ 
from sketches in that their semantics is dependent on an 
associated background image. 

   In summary, the goal of Classroom Learning Partner is to 
increase student-instructor interaction and student learning 
by supporting real-time feedback and assessment of in-
class exercises.  The Tablet PC has proven a very effective 
platform for this pedagogy, enabling facile and natural 
interaction for both instructors and students. Through our 
continued research and deployments we hope to continue 
to demonstrate the benefits of improved student learning, 
especially in classes currently too large to take advantage 
of real-time feedback and in-class assessment. 
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