

Supporting Feedback and Assessment of Digital Ink Answers to In-Class Exercises

Kimberle Koile, Kevin Chevalier, Michel Rbeiz, Adam Rogal,
David Singer, Jordan Sorensen, Amanda Smith, Kah Seng Tay, Kenneth Wu

MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, 32-221
Cambridge, MA 02139 USA

kkoile@csail.mit.edu
{kcheval, arogal, singerd, jsorense, kahseng, zstrif}@mit.edu

{mrbeiz, amandacs}@alum.mit.edu

Abstract
Effective teaching involves treating the presentation of new
material and the assessment of students’ mastery of this material
as part of a seamless and continuous feedback cycle. We have
developed a computer system, called Classroom Learning
Partner (CLP), that supports this methodology, and we have
used it in teaching an introductory computer science course at
MIT over the past year. Through evaluation of controlled
classroom experiments, we have demonstrated that this approach
reaches students who would have otherwise been left behind,
and that it leads to greater attentiveness in class, greater student
satisfaction, and better interactions between the instructor and
student. The current CLP system consists of a network of Tablet
PCs, and software for posing questions to students, interpreting
their handwritten answers, and aggregating those answers into
equivalence classes, each of which represents a particular level
of understanding or misconception of the material. The current
system supports a useful set of recognizers for specific types of
answers, and employs AI techniques in the knowledge
representation and reasoning necessary to support interpretation
and aggregation of digital ink answers.

Introduction
Effective and timely feedback is widely acknowledged to
be a powerful means of improving learning (e.g., Angelo
and Cross 1993, Bransford 1999, Steadman 1998). This
technique is applied easily when working with individuals
or small groups. Applying this technique in the classroom
is another matter, however. How can classroom
instructors determine which concepts have been
understood in a class of 25 or more, what kinds of
misunderstandings exist, and how prevalent they are?
How can instructors make these determinations quickly
and effectively enough to respond on the spot? A variety
of approaches have been used over the years, ranging
from straightforward queries (“Who doesn’t
understand?”), to structured questions (“Who thinks the

Copyright © 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

answer is …?”), to more elaborate approaches of the sort
enabled by wireless polling systems (e.g., Draper 2004).
 All of these techniques offer some benefit, but come
with drawbacks. No one likes to admit that they don’t
understand, the number of volunteered answers to in-class
questions is notoriously low, and while registering an
answer electronically with a "clicker" provides helpful
anonymity, the interaction currently must be structured in
terms of some variety of multiple choice.
 We are designing, building, and evaluating a system
called Classroom Learning Partner (CLP) to enable
interaction between students and instructors that offers
anonymity in replies and the ability to aggregate student
answers, but that provides a much wider range of
interaction styles than is currently available with
"clickers"—styles more in keeping with how people
naturally work together.
 As one example of our vision, consider a question we
often ask in our introductory computer science course:
Draw the data structure that results from evaluating a
particular Scheme1 expression. To assess understanding
for an expression, e.g., (define my-list (list 4 5 6)), we use
a variety of techniques, such as asking for volunteers,
writing the correct answer on the board and asking who
got it, or using two-part "carbon" paper and collecting one
of the parts. All of these techniques, however, are too
elaborate, labor intensive, and slow for the small but
important point being made.
 What if each student instead could write an answer on
his or her tablet computer, sketching something such as:

then submit the reply anonymously, and have software at
the receiving system interpret each student’s combination
of drawing and handwriting as a data structure; classify
the result as either correct, as one of a number of known
misunderstandings, or as an answer type not previously
encountered; and immediately present to the instructor a

1 Scheme is a dialect of Lisp.

In Proceedings of the Nineteenth Conference on Innovative Applications of AI, July 24-26, 2007.

histogram indicating the classification results. This
functionality would enable students to assess their
understanding quickly and instructors to repair any
misconceptions immediately.
 We have constructed and tested in the classroom a
system capable of interpreting and aggregating classroom
answers written as numbers or character strings, or sets or
sequences of numbers or character strings. We have
employed AI techniques in the knowledge representation
and reasoning necessary to support interpretation and
aggregation of digital ink answers: an ontology centered
around exercises and answers, a semantic representation
for interpreted digital ink, a method for using answer type
information to improve ink interpretation rates, and
similarity measures for aggregating interpreted ink
answers. We have evaluated the system in two ways: the
performance of the system's ink interpretation and
aggregation components, and the effect on student
learning of real-time feedback and assessment of
wirelessly submitted digital ink answers to in-class
exercises. In the following sections of this paper, we
discuss related work, and describe our system
architecture, use of AI techniques, and our evaluations.

Related Work
Classroom Learning Partner uses a wireless distributed
presentation system, Classroom Presenter (Anderson et al.
2004), as its underlying infrastructure. CLP's goals are
similar to Classroom Presenter's: to increase instructor-
student interaction and learning. CLP has two additional
goals: to explicitly support real-time feedback and in-
class assessment, and to do so in classes larger than is
currently possible with Classroom Presenter.
 Ubiquitous Presenter (Wilkerson, et al. 2005) is a web-
based version of Classroom Presenter that extends student
input devices to include a keyboard, and radio-button
polling plus aggregation for fixed-answer questions.
DyKnow (Berque 2004) supports wireless transmission of
ink between instructor and student machines, though does
not interpret or aggregate student answers. Other systems
support student question-asking using small handheld
devices in class: ActiveClass (Ratto, et al. 2003) allows
students to send typed questions directly to an instructor
during class; with eFuzion (Wentling et al. 2003) students
can post typed questions and answers to a group website.
 Systems that come closest to CLP's aggregation idea
are wireless polling systems: Students use a transmitter,
aka "clicker", to submit anonymous answers to multiple-
choice, true and false, or matching questions. The results
are tabulated and displayed on the instructor’s computer
in the form of a histogram. Such a polling system
provides a way for students to communicate their
misunderstandings to an instructor. Instructors, however,
are limited to asking questions with predefined sets of
answers—close-ended questions, which do not foster the
critical thinking skills that open-ended questions do

(Bloom 1956). CLP's aim is to facilitate aggregation of
both close-ended and open-ended questions.

Classroom Learning Partner Architecture
CLP's system architecture is shown in Figure 1. The
major components are an instructor authoring tool, an ink
interpreter, an aggregator, and a results displayer. The
components communicate via a central database, which
embodies our ontology. Most of CLP is written in C#,
the implementation language for the underlying
Classroom Presenter infrastructure.

Instructor Authoring Tool
CLP is organized around the idea of exercises, so the
instructor needs a way to create exercises for a classroom
presentation. Using the Instructor Authoring Tool (IAT),
an instructor creates a presentation in Microsoft
PowerPoint, then adds exercise information to the
presentation. The IAT allows an instructor to add two
key pieces of information: the location of a student's ink
answer, and the expected type for that answer. Providing
the answer location allows students to take notes
anywhere on a slide and not have to "lasso" an answer for
submission. More importantly, the location information
allows the instructor to include more than one exercise
per slide: the ink interpreter knows where to find answers
for particular exercises. Consider the following slide:

 Each box represents an exercise answer, so that three
exercises can be worked and discussed together, giving
students more practice and saving the instructor time. The
associated expected type information is used by the ink
interpreter to increase interpretation rates. Consider the
following ink answer: . If the expected type is a number,
the interpreter can prefer a hypothesis for 5 rather than
one for S. The aggregator uses the expected type
information to select appropriate similarity measures for
its groupings. The exercise information is stored in the
presentation, for ease of access by the interpreter, and in
the central database, for ease of access by the aggregator.
 In our current system, the instructor does not need to
provide answers; the aggregator clusters student answers
rather than matching student answers to instructor
answers.

Practice

 (define a 1)
 (define b 2)

What does the Scheme interpreter print for each of
these expressions:

 (list a b)

 (list ’a ’b)

 (list ’a b)

 Figure 1. CLP architecture
 Before class:

1. Instructor creates presentation and exercises using IAT; exercises are stored in database, slides on file server.
 During class:

2. Instructor retrieves presentation from database (or it is resident on her machine already).
3. In Classroom Presenter, presentation slides are broadcast to student machines; in CLP slides are automatically
loaded onto student machines when they log in to their Tablet PCs.

4. When a slide with an exercise is displayed, student enters ink answer, which is interpreted on his or her machine.
5. Each student's ink answer and interpretation are transmitted to database via wireless peer-to-peer (P2P) network.
6. When instructor indicates end of student exercise period (e.g., orally), she clicks on aggregator icon, which
causes aggregator to retrieve the interpreted ink answers, aggregate them, and produce summary data.
7. Summary data is transmitted to the database via wireless P2P network.
8. Summary data is displayed on instructor's machine.

Ink Interpreter
The ink interpreter (MRbeiz 2006) runs on the student
Tablet PCs. We had hoped to use the built-in Microsoft
recognition software, but found that for our domain its
error rate of 27% was too high. Instead, we designed an
architecture that combined new components with some of
the components of the built-in software. One of the
challenges of our architecture was to interpret intermixed
handwritten text and arrows, since recognizers typically are
able to recognize text or sketches, but not both in the same
sequence of ink. The CLP ink interpreter uses a two-tiered
architecture similar to that of MathPad: (LaViola, et. al
2005): (1) An interpreter performs recognition and
semantic information extraction from digital ink; (2) a
renderer renders and displays the semantic representation
of digital ink. Unlike MathPad, however, our interpretation
happens synchronously, i.e., after the user inputs ink.
While asynchronous interpretation is usually faster, it
requires the use of an event-based system that would have
required major modifications to the underlying
infrastructure. The difference in speed of synchronous vs

asynchronous interpretation is negligible for the small size
of our typical answers, so we deemed synchronous
interpretation sufficient. CLP also differs from MathPad in
that students do not see recognition results (though the
developers do when debugging), as we do not want them to
get distracted worrying about interpretation accuracy; we
want the lesson to proceed without interruptions. Some ink
misinterpretations will not affect the use of CLP in the
classroom: The CLP aggregator (Smith 2006) takes into
account interpretation errors by acknowledging the
recognition confidence provided by the interpreter.
Furthermore, CLP is designed to give the instructor an
overall view of the understanding in the classroom, rather
than an exact count of correct and incorrect answers.
 Shown in Figure 2 is the CLP ink interpreter architecture.
The current version does not segment text and sketches; it
passes ink directly to our handwriting recognizer. The
handwriting recognizer, which distinguishes text from
arrows, produces a semantic representation for the ink.
The ink interpreter currently under development will
segment text and sketches, and pass corresponding strokes
to the handwriting recognizer or the sketch recognizer.

CLP architecture

 8. Summary Data
 Sent

 3. CLP: Slides Loaded

 3. CP: Slides Broadcast

Repository
database +

 file server

Instructor
Slides

Student
Slides

Ink
Interpretation

Aggregation

Instructor
Authoring Tool

Summary Data

7. Summary Data
Stored

 6. Interpreted Ink
 Answers Retrieved

 5. Interpreted Ink
 Answers Sent

 4. Ink Answers Sent

2. Slides Retrieved

1. Slides Saved

Figure 2. Ink interpreter architecture (Rbeiz 2006)

The handwriting recognizer works in the following way:
• The ink segmentation module, derived from Microsoft's
Ink Analyzer, segments ink into individual chunks. Chunks
are elementary units that in our current implementation are
words or arrows.
• Our chunk error correction module attempts to fix errors
common to handwriting recognizers: splitting a word into
two words, or combining two words into one.
• The strokes of each chunk are then passed to the
Microsoft English recognizer which outputs several
hypotheses, ranked by a qualitative confidence score.
• The hypotheses are sent to the language model module,
which uses a domain-specific dictionary and knowledge of
expected exercise answer type in order to choose a best
hypothesis. Supported answer types are: number, string,
set, sequence, Scheme expression. Multiple-choice and
true-false are subclasses of the string type. Scheme
expression is a subclass of sequence; it uses a dictionary of
Scheme terms.
 Figure 4 shows CLP's ink interpretation for a student
answer: Ink is segmented, passed to the English recognizer,
then through the language model. An XML-like semantic
representation is the result.

<Answer Type="SEQUENCE">

<ChunkType="STRING"
Confidence="Strong">number,</Chunk>
<Chunk Type="STRING"
Confidence="Strong">number</Chunk>
<Chunk Type="ARROW" Confidence="Intermediate"/>
<Chunk Type="STRING"
Confidence="Strong">number</Chunk>

</Answer>

Figure 4. Segmentation and semantic representation

 Recognition accuracy traditionally has been measured
with a word error rate. In our research it was more
appropriate to test the distance between the input and
recognized strings in order to measure partial accuracy. If
the input string is “caar”, for example, and the subsequent
recognition results are “cr” and “car”, we want to take into
account the similarity between the expected answer and the
hypothesized one, something a word error rate cannot do.
The Levenshtein distance (Atallah 1998), or edit distance,

measures the distance between two strings, defined as the
minimum number of operations needed to transform one
string into the other, where an operation is an insertion,
deletion, or substitution of a single character. In our
example, the edit distance between “caar” and “cr” is 2
while the distance between “caar” and “car” is 1. In a
controlled experiment, users were asked to ink 21
representative answers, and 167 inked answers were
collected from several users. The inked answers were
dynamically interpreted, stripped of spaces, and converted
to lower case. They were then compared to the input. The
current version of the handwriting recognizer performed
with 249 characters errors out of 1820 characters,
approximately 13% error rate. (See (Rbeiz 2006) more
details.) The error rate for numbers was 5%.

Aggregator
The aggregator, which runs on the instructor's machine, is
started by the instructor after students have submitted
exercise answers. The aggregator retrieves student
answers from the central database and, using the semantic
representations produced by the ink interpreter, knowledge
of expected answer type, and similarity measures
associated with the type, groups the most similar answers
together into equivalence classes. It outputs the classes,
class sizes, and two example members for each class. The
aggregator results displayer then displays a histogram on
the instructor’s machine, with one histogram bar per class.
(The displayer is discussed in the next section.) The
aggregator is implemented in Lisp.
 To place the student answers in meaningful groups, the
aggregator compares student answers using similarity
measures based on answer type. It is being designed to
take two approaches: a top-down method and a bottom-up
method. The top-down method first places all of the
answers in a single group, then searches for the most
logical split by picking two new group "centers" and
dividing the rest of the answers based on which center is
the most similar. The smaller groups are then split in a
similar fashion until an instructor-determined number of
groups has been created. The bottom-up method begins
with each answer in its own one-member group and
searches for the most logical way to merge two of the
groups. The groups are merged until the instructor-
specified number of groups remains. If the instructor has
provided answers for an exercise, the aggregator uses these
answers to determine the choice of splits and merges. If
answers are not provided, the similarity measures
determine the splits and merges.
 An early design decision put most of the "smarts" in the
aggregator rather than the ink interpreter. Consider the
following student answers to a true-false question:

 The reasoning for equating all of these with "true" could
happen in either the ink interpreter or the aggregator: The
interpreter could have canonical representations for
particular strings or characters and include those in its
semantic representation; or the ink interpreter could leave

the ink as written, and the aggregator could contain
synonym tables that it used when clustering student
answers. We opted for the second approach, putting the
intelligence in the aggregator since it was already
reasoning about answer similarity.
 Our current prototype, which employs the top-down
algorithm, can aggregate numbers, strings, sets, sequences,
and answers to true-false or multiple-choice questions
(since these answers are treated as strings). It has been
designed such that other question types may be integrated
easily by writing the similarity measure for each new
question type and by adding a small amount of dispatch
code. The current similarity measure for numbers is the
absolute value of the difference between the two numbers.
Our string similarity measure uses a modified version of
Levenshtein distance that assigns different costs to
insertion, deletion, and substitution. The similarity measure
for sequences employs a similar algorithm: The sequence
itself is considered a string, with word-by-word
comparisons made in the same fashion as character-by-
character comparisons are made in strings. Sets are
compared in the same fashion, but without penalty for
differences in element order. For each similarity measure,
the aggregator has a threshold for determining whether an
answer is similar enough to be placed with other members
in an equivalence class. This parameter is user-settable and
currently has a value of 10%, meaning that answers must
be at least 90% alike to be placed in the same class.
 The aggregator has been tested using student answers
from online problem sets for the introductory computer
science course (XTutor). Its choice of grouping was
examined for "reasonableness" and also compared against
grouping performed by "human aggregators". Four
questions, representative of those asked in class, were
chosen from the online problem sets; two hundred student
answers were selected for each question. One of the
questions is shown below. (See (Smith 2006) more
details.)

 Question: Assume that we have evaluated the following
definition:

 (define fizz

 (lambda (a b) (* (/ a b) (/ b a))))

 Now, we evaluate the expression:

 (fizz (+ 1 -1) 1)

 What is the first step of the substitution model?

 Answer: (fizz 0 1)

Figure 5. Aggregator test question
 When the student answers were aggregated for the above
example, the largest bin contained answers that included
the terms "define" or "lambda", indicating that students did
not understand the meaning of those terms. The second
largest bin contained the terms "a" and "b", indicating that
students did not understand that they were to substitute the
argument values of 0 and 1 into the expression. The
remaining two bins contained answers that represented the
second and third steps in the model, respectively,
indicating that students were not aware of what constituted

a step.
 To compare machine and human aggregator results, 25
answers—about the size of a typical class—were chosen
for each question, printed on paper, and given to four
former 6.001 instructors and teaching assistants. These
human aggregators were asked to group the answers using
any similarity measures they chose. To ensure the 25
answers were representative of the entire set, the original
200 answers were aggregated and answers were drawn
from each bin in proportion to the relative size of the bins.
After grouping the student answers, each human
aggregator was asked to explain his or her groupings.
 For two of the four questions, the groupings created by
the human aggregators were very similar to those created
by CLP. For the question above, for example, the human
aggregators created three groupings rather than four,
combining into one bin the answers that indicated missed
steps. For one question, two of the human aggregators
produced groupings similar to CLP's and two did not. One
question produced very different groupings even among
the human aggregators, with the instructors and teaching
assistants grouping based on the presence or absence of
particular terms, length of answer, perceived
misconception, or result of evaluating the student answer.
Finally, the human aggregators thought CLP's groupings
for each of the four questions "reasonable".
 The conclusion is an obvious one: There is not
necessarily one correct set of groupings for a particular set
of answers. Instructors can control the grouping should
they choose, however, by specifying answers for exercises
created with the IAT. These answers then serve as "bins"
for the aggregator.

Results Displayer
When the aggregator has completed its grouping of student
answers into equivalence classes, it calls the results
displayer to put up a histogram on the instructor's machine.

Figure 6. Aggregation results display
 Each bar in the histogram, as shown above, is labeled
with the number of items in the associated equivalence
class and with a label derived from one of the elements in
the class. In the current version of CLP, the items
associated with each histogram bar are not directly

Figure 7. Portion of CLP database model

accessible via the bar. Instead, the instructor selects color-
coded student answers that were sent to the instructor's
machine using Classroom Presenter's underlying ink
transmission mechanism. As shown in Figure 6, each
answer is labeled with student machine name and ink
interpretation, and each label is in the color of the bar to
which the answer belongs. Because instructors can easily
become overwhelmed with more than eight submissions
(Anderson 2005a), it is critical that student submissions be
stored not on the instructor's machine but in CLP's central
database, and that only a small number of representative
answers be sent to the instructor's machine. The version of
the results displayer currently under development operates
in this fashion.

Central Database
The central database, through which the various
components of CLP communicate, embodies the ontology
necessary to support interpretation and aggregation of in-
class digital ink answers. The ontology centers around
Exercise and Answer objects. The instructor creates
exercise objects, which are stored in the database, using the
Instructor Authoring Tool (IAT). Answer objects are
created automatically in the database when students submit
digital ink answers in class. The database is a relational
SQL database, chosen for ease of integration with our C#
code. We emulate an object-oriented database by
representing object classes as different tables (Figure 7).
Instances are represented as rows in tables.

 In our current implementation, the database runs on a
dedicated Tablet PC, which also serves as a gateway to the
Internet.2 In an earlier implementation, the database ran on
a remote server because it was deemed the option most
reliable and secure. We had problems, however, with
database submissions being lost due to unreliable network
connectivity to the remote host. Since migrating to a
dedicated local server, to which the instructor and student
machines communicate via a wireless peer-to-peer network,
we have not experienced loss of student submissions. The
local server also has the advantage of allowing the
instructor to be entirely self-sufficient in the classroom.

Classroom Evaluation
In parallel with our implementation efforts, we have been
conducting studies to assess the impact on student learning
of real-time Tablet-PC-based feedback and assessment of
in-class exercises. As previously reported (Koile and
Singer 2005, 2006), we have evaluated the hypothesis that
the use of such a system increases student learning by: (1)
increasing student focus and attentiveness in class, (2)
providing immediate feedback to both students and
instructor about student misunderstandings, (3) enabling
the instructor to adjust course material in real-time based
upon student answers to in-class exercises, (4) increasing
student satisfaction. In three studies conducted in MIT's
introductory computer science, we evaluated each of the
above four parameters by means of classroom observation,
surveys, and interviews. We also measured student
performance using grades for exams, programming
projects, problem sets, a final examination, and class
participation. The performance results are summarized in
this section.

Learning Studies. We have conducted studies in MIT's
introductory computer science course, 6.001, during
academic terms Fall 2005, Spring 2006, and Fall 2006. The
course typically has an enrollment of 100 for Fall terms
and 200 to 300 for Spring terms. Students taking the
course meet in lecture for 50 minutes twice a week, in
recitation classes of size 15 to 25 for 50 minutes twice a
week, and in tutorial classes of size 5 to 7 for 50 minutes
once a week. Our learning studies were conducted in
recitation sections taught by the first author; classroom
observation, surveys, and interviews were conducted by
the fifth author. In each of the studies, Tablet PCs were
deployed the sixth week of class—after the first exam—
and used once or twice a week for the remaining nine
weeks of the course. In Fall 2005, the first author taught
one 6.001 recitation section in which Tablet PCs running
Classroom Presenter software were deployed. In Spring
2006, the first author taught two 6.001 recitations, one that
served as a control group in which she employed
traditional teaching tools such as blackboard and overhead

2 With Internet access, students are able to save class slides
directly to their home directories.

projector; and one that served as the experimental group in
which she used Tablet PCs running Classroom Presenter
software. CLP was under development while these two
studies were being carried out. Since the instructor used
the same feedback and in-class assessment pedagogy as
planned for CLP, we deemed the results of evaluating the
use of Classroom Presenter to be relevant for CLP as well.
In Fall 2006, the first author again taught two 6.001
recitations, one serving as a control group without Tablet
PCs, and one serving as an experimental group with Tablet
PCs and CLP software. In each of these three studies, the
same real-time feedback and in-class assessment pedagogy
was used in both control classes and experimental classes.
The experimental classes, however, had the benefit of
anonymous submission of student answers via Tablet PCs
in place of traditional techniques such as calling on
students to show their work on the blackboard. CLP's
aggregator was used in Fall 2006 to aggregate confidence
surveys that were given at the end of each class. It was not
used for aggregating student answers to exercises because
the ink interpretation rate was not high enough for
meaningful results. (See next section for discussion of this
issue.) Below is an example of a student answer.

Figure 8. Student submission during a 6.001 class

 Our findings in each of the studies have been consistent:
In the classes using Tablet PCs and wireless transmission
of answers to in-class exercises, fewer students than
expected performed poorly (Koile and Singer 2005, 2006).
Each of the following graphs illustrate the gap between the
lowest performing students in the Tablet PC class and the
non-Tablet-PC class. Note that in each study the lowest
performing students were in the classes without Tablet
PCs.
 In Fall 2005, the non-Tablet-PC students were in other
instructors' classes, so we were not able to control for
teaching style. Nevertheless, the use of the Tablet PCs,
plus submission of answers and immediate feedback
pedagogy, seems to have benefited students at all levels of
performance. When we controlled for teaching style, as in
the Spring 2006 and Fall 2006 studies, there is a consistent
pattern that the poorer performing students benefit most.
The results are statistically significant for the Fall 2005 and
Fall 2006 studies. The number of students participating in
the Spring 2006 study was too small for statistical

significance, though the pattern of performance in that
study was consistent with the others.

Figure 9. Graphs of student performance

 In the Fall 2005 and Spring 2006 studies, we saw slight
increases in the number of top performing students in the
experimental class; we did not see this increase in the Fall
2006 study. This small or negligible increase indicates that
either the top performing students are not benefiting from
use of the technology (and would learn the material just as
well without it), or that their benefits are not being
measured. Top performing students in the experimental
class, for example, could have learned the material more
quickly than their counterparts in the control class.
 We are repeating our learning study in Spring 2007,
again with control and experimental groups in the first
author's 6.001 recitation classes. We again will investigate
the parameters mentioned earlier and the affect of Tablet
PCs and CLP on student performance.

breadth first search

What is the order in which nodes are explored?

CLP in the Classroom. We deployed CLP in the Fall
2006 classroom study. As mentioned earlier, the first
author used CLP's aggregator at the end of each class for
aggregating confidence scores, numbers on a scale from
one to seven that indicated a student's confidence in
understanding particular concepts. The expected answer
types were numbers, whose ink interpretation error rate as
noted earlier is 5%. That rate was high enough for useful
aggregation of student submissions. The instructor used
the aggregated results at the end of each class to gauge the
students' understanding and to guide lesson planning for
the next class. Unfortunately, the ink interpretation was not
accurate enough for the aggregator to be used for many
other exercises. The sequence answer type, for example,
was not specific enough to achieve good recognition for
many answers. When interpreting the sequence of single
characters shown in Figure 8, for example, the Microsoft
English recognizer returned a sequence of multi-character
strings rather than individual characters, presumably
because it was trained to search for words.

Current Work
 We are continuing our two lines of research: further
development of CLP, and conducting another learning
study this term. We again plan to deploy Tablet PCs in
one of the first author's two 6.001 recitations. We will
deploy a new version of our ink interpreter, one that we
expect will have improved recognition rates because it
includes more specific answer types. Such new types, e.g.,
sequence of characters, will improve interpretation
rates by supplying more information for the interpreter to
use when choosing among hypotheses. We also will add
to the IAT a mechanism for storing instructor-specified
answers, to be used by the aggregator as clustering
"centers". We will compare the equivalence classes
produced using the instructor-specified centers with classes
created using aggregator-chosen centers.
 In addition, we are working on the interpretation and
aggregation of sketched answers, such as the box-and-
pointer diagram shown in the introduction. We also are
working on the interpretation and aggregation of what we
are calling marked answers, such as a circle around a
multiple-choice answer or on a map. These marks differ
from sketches in that their semantics is dependent on an
associated background image.

 In summary, the goal of Classroom Learning Partner is to
increase student-instructor interaction and student learning
by supporting real-time feedback and assessment of in-
class exercises. The Tablet PC has proven a very effective
platform for this pedagogy, enabling facile and natural
interaction for both instructors and students. Through our
continued research and deployments we hope to continue
to demonstrate the benefits of improved student learning,
especially in classes currently too large to take advantage
of real-time feedback and in-class assessment.

Acknowledgments
The authors thank MIT iCampus (http://icampus.mit.edu)
for funding this project, and Hewlett Packard and MIT
Academic Computing for generously donating Tablet PCs.
We thank Howard Shrobe for advice on this research.

References
Anderson, R., Anderson, R., Simon, B., Wolfman, S.,
VanDeGrift, T., and Yasuhara, K. Experiences with a tablet-pc-
based lecture presentation system in computer science courses. In
Proc. of SIGCSE '04.
Anderson, R. Personal communication. 2005.
Angelo, T.A. and Cross, K.P. Classroom Assessment
Techniques: A Handbook for College Teachers. Jossey-Bass
Publishers, San Francisco, 1993.
Atallah, M. J. (Editor), Algorithms and Theory of Computation
Handbook, “Levenshtein Distance (13-5)”, CRC Press, 1998.
Berque, D., Bonewrite, T., Whitesell, M. Using pen-based
computers across the computer science curriculum. In Proc of
SIGCSE '04, pp. 61-65.
Bloom B.S. Taxonomy of Educational Objectives, Handbook I:
The Cognitive Domain. New York: David McKay Co. Inc., New
York, 1956.
Bransford, J.D., Brown, A.L., and Cocking, R.R., Eds. How
People Learn: Brain, Mind, Experience, and School. National
Academy Press, Washington, D.C., 1999.
Draper, S.W. From active learning to interactive teaching:
Individual activity and interpersonal interaction. In Proc. of
Teaching and Learning Symposium: Teaching Innovations, 2004,
The Hong Kong University of Science and Technology.
Koile, K. and Singer, D. A. Development of a tablet-pc-based
system to increase instructor-student classroom interactions and
student learning. In Impact of Pen-based Technology on
Education: Vignettes, Evaluation, and Future Directions. D.
Berque, J. Prey, and R. Reed (eds). Purdue Univ Press. 2005.
Koile, K. and Singer, D.A. Improving learning in CS1 via tablet-
pc-based in-class assessment. In Proceedings of ICER 2006,
September 9-10, 2006, University of Kent, Canterbury, UK.
LaViola, J. and Zeleznik, R., MathPad: A System for the Creation
and Exploration of Mathematical Sketches, Brown University,
2005.
Ratto, M., Shapiro, R.B., Truong, T.M., and Griswold, W. The
ActiveClass project: experiments in encouraging classroom
participation. In Proc. of CSCL '03.
Rbeiz, M. A. Semantic Representation of Digital Ink in the
Classroom Learning Partner. MIT EECS Master of Engineering
thesis. May, 2006.
Smith, A. C. Aggregation of Student Answers in a Classroom
Setting. MIT EECS Master of Engineering thesis. August, 2006.
Steadman, M. Using classroom assessment to change both
teaching and learning. New Directions for Teaching and
Learning, 75, 1998, pp. 23-35.
Wilkerson, M., Griswold, W., and Simon, B. Ubiquitous
presenter: increasing student access and control in a digital
lecturing environment. In Proc of SIGCSE '05, pp. 116-120.
XTutor. http://icampus.mit.edu/XTutor/

