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Abstract 
 

Interpretation accuracy of current handwriting 
applications can be improved by providing contextual 
information about an ink sample’s expected type. This 
expected type, however, has to be known or provided a 
priori, and poses several challenges if unknown or 
ambiguous. We have developed a novel approach that 
uses a classic machine learning technique to predict 
this expected type from an ink sample. With this 
approach, we can create a “dynamic dispatch 
interpreter” by biasing interpretation differently 
according to the predicted expected types of the ink 
samples. When evaluated in the domain of introductory 
computer science, our interpreter achieves high 
interpretation accuracy (87%), an improvement from 
Microsoft’s default interpreter (62%), and comparable 
with other previous interpreters (87-89%), which, 
unlike ours, require additional expected type 
information for each ink sample. 
 
1. Introduction 
 

We have been investigating digital ink interpretation 
for use in a wireless classroom interaction system that 
enables real-time feedback and assessment of students' 
digital ink answers to in-class exercises. ([1][2][3]) 
have shown that such systems hold great promise for 
improving student interaction and learning in 
classrooms. The system, Classroom Learning Partner 
(CLP), consists of a network of Tablet PCs running 
software for posing questions to students, interpreting 
their handwritten answers and aggregating the answers 
into equivalence classes. With CLP, students handwrite 
their answers instead of choosing from a pre-defined 
set. As a result, students can engage not just in 
recognition of material, but in higher-order tasks such 

as analysis, synthesis, and evaluation, which are 
necessary for learning [4].  

The interpretation accuracy can be improved 
[3][7][8] by biasing an interpreter with contextual 
information of the answer types:  e.g., the instructor 
specifies ahead of time what type of answer is expected 
for each exercise, and that information is used to 
dispatch to a specialized ink interpreter. CLP currently 
has an interpretation accuracy of 89% using 
interpreters biased with contextual information of 
answer types [2][3].  What if the interpreter itself, 
however, could figure out an answer’s type 
dynamically when the answer was submitted?  This 
capability would free the instructor from having to 
spend time pre-specifying answer types; enable 
instructors to create exercises during class; and 
increase the interpretation rate for students' incorrect 
answers that happened to be of a different type than 
expected. This paper describes a novel method for 
increasing ink interpretation rates by such dynamic 
dispatch: it uses machine learning techniques to extract 
features from ink strokes to predict the ink answer 
type, then dispatches to specialized interpreters based 
on the type. 
 
2. Related work 
 

Artificial intelligence algorithms have contributed 
significantly to improving handwriting recognition to 
date.   Specific techniques used include support vector 
machines, hidden Markov models (HMMs) [5], neural 
networks, genetic algorithms, and convolutional time 
delay neural networks (TDNN), used by Microsoft’s 
default handwriting recognizer [6]. Biasing ink 
interpretation with templates and annotation can 
improve the interpretation accuracy for mailing 
addresses [7] and forms [8]. CLP employs the use of 
instructor-specified expected answer types for biasing 
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interpretation [9], choosing a different domain-
specialized interpreter for each expected type.  

 
3. Approach 

 
Our interpretation system uses machine learning 

techniques to predict expected ink sample type, then 
dynamically dispatches interpretation to a specialized 
interpreter (see Figure 1). For the experiments 
described in this paper, we use 1810 ink samples 
collected from students spanning 181 representative 
examples of answers. Eighty-eight of these examples 
lie within the domain of introductory computer science 
(including the 21 from [9]) and 93 within introductory 
chemistry, since these are the two domains in which 
CLP is being used. The examples chosen for our ink 
type prediction experiments include diagrams and text, 
and span 8 different types and 14 subtypes. 

We ran 20 different experiments on our collected ink 
samples to observe how accurately classifiers could 
predict expected types and subtypes (see Figure 2 for 
some examples). Each experiment used a subset of the 
types we want to be able to predict. Based on our 
previous work, we hypothesized that we would be able 
to accurately predict the correct type at least 80% of 
the time, and that greater accuracy is obtained with 
fewer types in the experimental subset.  
 
3.1. Classification 
 

Ink type prediction is a classic class prediction 
problem in machine learning: using extracted features, 
for a particular sample we predict the class (type or 
subtype, in our case). These subtypes can be used to 
further specialize our type prediction: e.g., if our 
machine learning component predicts that a sample is a 
sequence, and a comma subtype is predicted, for 
example, the sample type can be specialized to a 
comma-delineated sequence, as opposed to just a 

sequence, with elements that could be delimited by 
anything.  This contextual information is used by the 
sequence interpreter in its chunking algorithms, which 
employ heuristics to separate ink samples into smaller 
parts to simplify and improve interpretation.  

3.2. Feature selection 
 

The dynamic nature of digital ink strokes allows 
many possible temporal and spatial features to be 
extracted for machine learning. We extract information 
about individual strokes as well as the vector of all 
strokes in each ink sample. With only basic knowledge 
of our domain of expected answer types, we choose 
some distinct features to differentiate classes; others 
are generic features that we feel might be useful to the 
problem space of short written text or diagrams. 

Some the features that we consider are: 
 

1. Total number of strokes 
2. Total number of positive 

stroke adjacent spacings 
3. Sample height span 
4. Sample width span 
5. Sample width-height 

ratio 
6. Stroke area density of 

points  
7. Stroke horizontal density 

of points 
8. Stroke heights 
9. Stroke widths 

10. Stroke lengths 
11. Stroke points count  
12. Stroke adjacent 

spacing 
13. Stroke adjacent 

spacing differentials 
14. Number of stroke 

intersections 
15. Stroke angles 
16. Stroke speeds 
17. How close each 

stroke looks to a 
number 

 
For each feature that applies to individual strokes (6-

17), we extract information about the smallest and 
largest three values, as well as the 25th, 50th and 75th 
percentiles. We also consider the entire ink sample as a 
vector of strokes (for each of these features 6-17) and 
use this vector as an additional collective feature. For 
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these feature vectors, we calculate their means and 
variances as additional scalar features.  

Dimensionality reduction was then performed, the 
details of which have been omitted due to paper length. 
 
4. Evaluation 
 
 We evaluate classification accuracy with several 
classification algorithms, each with distinctive learning 
methods, using the Waikato Environment for 
Knowledge Analysis (WEKA) [10]: an SVM trained 
with sequential minimal optimization (SMO) [11], a 
C4.5 decision tree [12], and a probabilistic Naïve 
Bayes classifier. We compute the accuracy of our class 
predictions using stratified cross validation (CV) 
randomized across each of the training and test sets.  
 The goal of the evaluation we describe in this paper 
is to highlight the variation in accuracy for some 
classifiers, rather than to find the perfect classifier for 
our ink type prediction.  
 
4.1. Ink type prediction accuracy 

We evaluated ink type prediction with two models: 
K-fold and leave-one-out CV, allowing us to obtain 
unbiased accuracy results by preventing testing on the 
same samples that were used during training. Figure 3 
displays, for some K-fold CV experiments, the 
accuracy rates of predicting the correct type according 
to the number of features selected after dimension 
reduction. We see that there was no single best 
classifier, although SMO tended to perform better than 
the other two learners (see Table 1). Each experiment 
also requires a different optimum number of attributes 
to obtain peak accuracy in type prediction.  

We also saw that leave-one-out CV still performed 
relatively well, with peak accuracies lower by only 6-
10% than that obtained from K-fold CV. We discuss 
this observation later. 

 
Table 1. Prediction accuracy results for SMO 

 

Experiment # types K-fold Leave-one-out  
number-string 2 93.31 92.77 
number-sequence 2 100.00 100.00 
sequence-commas 2 100.00 100.00 
sequence-subtypes 3 100.00 95.95 
chemistry-all 3 99.52 99.05 
string-seq-scheme 3 97.00 94.23 
compsci-no-number 4 96.27 91.23 
compsci-no-boolean 4 91.55 87.75 
compsci-all 5 89.34 83.37 

 
4.2. Overall interpretation accuracy 

 
 We also evaluated our dynamic dispatch 
interpretation system using ink type prediction on the 
basis of final interpretation accuracy for the domain of 
introductory computer science (the “compsci-all” 

experiment). Accuracy was measured with the edit 
distance between what was interpreted and the original 
example string used for input. We chose this domain, 
that consisted of five types (numbers, strings, 
sequences, true-false, Scheme expressions), because all 
of the student answers in this domain are in the form of 
text (as opposed to drawings), allowing us to make 
comparisons easily with other text interpreters, such as 
Microsoft’s default interpreter (using TDNN), and the 
already deployed CLP interpreters, needing a priori 
contextual information. 

 Our approach described in this paper obtained close 
to 87% accuracy, comparable with the other 
interpreters developed for CLP (see Table 2). The main 
difference was that our dynamic dispatch interpreter 
required no contextual information to be provided a 
priori for each ink sample, and relied instead on 
machine learning to predict the expected type just from 
information extracted from the digital ink. Therefore, 
with the same basic ink input, our interpreter 
outperformed Microsoft’s default interpreter by 24%, 
while nearly attaining the same level of accuracy as 
CLPv3 (see Figure 4). 

 
 

Table 2. Interpretation accuracy results 
 

Base Type CLPv3 CLPv1 Ours Msft 
1. Number 98.27 98.27 93.51 30.74 
2. Scheme Exp. 84.72 84.72 84.72 80.91 
3. Sequence 87.03 76.22 83.35 71.17 
4. String 78.06 78.06 74.08 54.95 
5. True-False 97.64 97.64 97.64 74.53 
Total (%) 89.14 86.98 86.66 62.46 

 

      Figure 3. Comparison of ML algorithms 
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4.3. Discussion 

 
 We observe that the accuracy of predicting the 
correct type in the number-string experiment was low, 
because it is inherently hard to tell whether a simple 
vertical stroke is a ‘1’ (one), ‘I’ (capital-i) or ‘l’ 
(lowercase-L). If that stroke were to be slightly tilted, 
‘/’ or ‘\’ would also be possibilities. This challenge 
illustrates the usefulness of biasing interpretation with 
contextual information. These ink samples, however, 
lack sufficient contextual information to predict their 
type correctly, thus lowering our accuracy rates in the 
number vs. string experiments.  
 Leave-one-out CV showed poorer prediction 
accuracy results than K-fold CV, mainly because the 
classifiers were not trained with all the tested 
representative samples in the former. The accuracy 
obtained, however, was still relatively high at more 
than 80%, showing it is possible to accurately predict 
correct expected types or flags of representative 
samples that have not been observed at all previously. 
The system would undoubtedly deteriorate in 
prediction performance the more examples we tested 
from outside our training subset. We thus would need 
to ensure that retraining is occasionally performed after 
deployment, which can be as simple as post-
deployment supervised labeling of real data collected. 

 
5. Contributions and future work 
 

In this paper, we presented a novel application of AI 
methods to ink interpretation: improving accuracy by 
using machine learning to predict expected ink types 
for student digital ink answers in a classroom. Our 
machine learning approach extracts many features 
from the dynamic ink strokes and uses dimensionality 
reduction to generically improve prediction accuracy 
over the baseline for many experiment classes. We 
have deployed ink type prediction as a module to be 
used in actual CLP interpreters; these dynamic dispatch 

interpreters achieve far more accurate interpretations 
(87% accuracy) than the default Microsoft interpreter 
(62%), and close to that of the deployed CLP 
interpreters (87-89%) which require type information 
to be provided a priori.  
 We have shown that we can interpret ink reasonably 
well without the provision of a priori contextual 
information. We believe, however, that we can achieve 
an even higher level of accuracy if we now combine 
the benefits of our type prediction and dynamic 
dispatch with minimal amounts of contextual 
information.  This combined approach is the focus of 
our current work. 
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